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Influence of expansion on hierarchical structure
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We study a one-dimensional model of gravitational instability in an Einstein–de Sitter universe. Scaling in
both space and time results in an autonomous set of coupled Poisson-Vlasov equations for both the field and
phase space density, and theN-body problem. Using dynamical simulation, we find direct evidence of hierar-
chical clustering. A multifractal analysis reveals a bifractal geometry similar to that observed in the distribution
of galaxies. To demonstrate the role of scaling, we compare the system to other one-dimensional models
recently employed to study structure formation. Finally we show that the model yields an estimate of the time
of galaxy formation of the correct order.
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I. INTRODUCTION

The discovery nearly 25 years ago of large scale str
tures in the universe@1# stimulated several new approach
to cosmology. In order to explain, or at least model, t
hierarchical distribution of galaxies in clusters, and clust
of clusters, surrounding immense voids, it was proposed
matter in the universe occupies a fractal set, with a defi
fractal geometry and dimension@1,2#. It is currently believed
that the process for creating this singular distribution of m
follows from the hydrodynamic flow of dark matter, eith
hot or cold@1,3#. In the former case structure evolves in t
top down mode, while the latter is bottom up and reflects
more prevalent view. Both of these themes introduce th
own peculiar set of difficulties: the fractal assumption pla
havoc with the homogeneity at large scales required by
standard model@1# while the bottom up scenario may b
problematic because it predicts galaxy formation at a ti
when the background density is small@4#.

Before ~and after! the discovery of large scales, usef
information was obtained by assembling statistical inform
tion concerning the distribution of galaxies in the sky. T
primary tool for organizing this information is the constru
tion of correlation functions representing the distribution
pairs of galaxies, triples, etc. While complete functions at
orders are unobtainable, specific symmetries and sca
laws have emerged from the data. First the validity o
power law was established for the dependence on interga
tic separation of the pair correlation function, with expone
g51.8 @1#. Second, it was found that the data on high
order distributions supported the assumption that the nth
der correlations are homogeneous functions of orderN
21)g @1#.

In pioneering work, Bialin and Schaeffer@5# employed
these properties to reconcile the assumption of homogen
on large scales with fractality on intermediate and sm
scales. They demonstrated that the distribution of gala
was not consistent with a normal fractal, but rather with
geometry that is characterized by two length scales,l 1 and
1063-651X/2002/65~5!/056121~5!/$20.00 65 0561
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l 2, wherel o@ l 1@ l v , and l v@ l 2@ l c . Here the transition to
homogeneity occurs atl o , the maximum size of voids isl v ,
and the typical size of clusters isl c . They named this objec
‘‘bifractal.’’ More recently the approach has been succe
fully applied to the distribution of mass in halos@6#.

In addition to the Hausdorff dimension, the existence o
hierarchy of generalized dimensionsDq which are closely
related to the properties of correlation functions at sm
scales forq>2, is now well established@7#. In particular,D0
is simply the box counting dimension,D1 is the information
dimension, andD2 is the correlation dimension. For a no
mal fractal with self-similar geometry at all scales,Dq11
<Dq @7#. An unusual feature of bifractal geometry is th
violation of this inequality, which can be taken as its sign
ture @5,6#.

A central question for astrophysics is whether it is po
sible to construct a single, consistent, dynamical model
~1! obeys physical law,~2! is homogeneous on large scale
~3! exhibits hierarchical clustering or aggregation, and~4! is
characterized by bifractal geometry. While three-dimensio
N-body simulations suggest this possibility@8#, due to both
algorithmic and numerical limitations at the present tim
their results must be considered inconclusive, and we
elaborate on this point later. As early as the 1930’s, dyna
cal models of cosmic evolution were introduced that join
the Hubble flow with the gravitational field@1#. They were
later rejected as possible sources of structure formation
cause, in the linear approximation, density fluctuations ab
a homogeneous background did not grow sufficiently rapi
to produce galaxies during the lifetime of the universe@1#.
Here we revisit a version of one of these models with
goal of following the evolution of small initial fluctuation
over the full nonlinear regime.

In the following we introduce a version of a de Sitt
universe obeying classical dynamics appropriate to
postrecombination epoch. As in the relativistic Tolma
Bondi models@9#, we simplify the geometry by assumin
spherical symmetry about an observer. In addition, we ex
ine a region sufficiently distant from the observer that t
©2002 The American Physical Society21-1
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effects of curvature can be ignored. In contrast with m
earlier treatments@1,9#, we rescale both space and time
obtain a completely autonomous dynamical system. T
model was first introduced by Rouet and Feix@10,11#, who
showed that aggregation was stimulated by excitations a
Jeans length, and computed a box counting dimension
than unity, suggesting fractal behavior. Here we use Vlas
Poisson theory to characterize the central properties of
dynamics. We then use dynamical simulation to examine
consequences of a variety of initial conditions. We carry
a complete dimensional analysis of the phase plane and
sity distribution as time evolves, and show that the syst
exhibits bifractal geometry in all cases where the Je
length is initially available to the fluctuations. We demo
strate that, for this model, the earliest time for aggregatio
nearly independent of initial conditions or population. W
use the value of this scaled time to estimate the earliest
och for the appearance of galaxies in the universe, with
prising results.

II. CONSTRUCTION OF THE MODEL

Consider a spherically symmetric, homogenous, expa
ing universe with densityr(t) under conditions where New
tonian mechanics applies. LetC(t/t0) be the cosmologica
scale factor, so that the distancel (t) between two objects a
the time t is related to that at the earlier timet0 by l (t)
5C(t/t0) l (t0). Here t0 does not signify the big bang, bu
rather an arbitrary, later time where only gravitational ph
nomena play an important role in the cosmic evolution.
this expansion we must add a residual motion that is a sm
perturbation of the Hubble flow, but leads the system t
nonlinear regime.

From spherical symmetry, we only need to track a sin
coordinate, the radius. Thus our system elements are re
sented by concentric mass shells. The description can be
ther simplified by assuming that we are far from the cente
symmetry and that the length of the system is small co
pared to the radius of the shells, so that we may replace t
with planar sheets. Then the equation of motion of a sh
with coordinatex is simply

d2x

dt2
5E~x,t !, ~2.1!

whereE is the gravitational field.
For the special case of an Einstein–de Sitter unive

there is a unique rescaling of space and time to a new fr
in which the dynamical evolution is autonomous. Introdu
new coordinatesx̂ and t̂ ,

x5C~ t !x̂, dt5A~ t !2d t̂, ~2.2!

whereC5(t/t0)2/3 is the usual scale factor@1#. To insure that
the transformed version of Eq.~2.1! is autonomous, we mus
then chooseA(t)5(t/t0)1/2. The complete three-dimension
expansion is taken into account with this choice ofC(t). In
the transformed frame the average densityr̂ is constant. Fol-
lowing standard practice, we choose the inverse Jeans
05612
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quency, defined byv̂ j
254pGr̂ as our unit of time~see@10#

for a more complete discussion!. The equation of motion for
a mass sheet in the new frame then takes the form

d2x̂

d t̂2
1g

dx̂

d t̂
2 x̂5Ê, ~2.3!

whereÊ is the transformed field and the choice of a neutr
izing background requiresg51/A2. Equation~2.3! describes
the motion of a collisionless system of particles moving u
der their mutual gravitational field. From Gauss’s law a
plied to uniform mass sheets, the field experienced by a
ticle on the line is simply proportional to the net difference
mass of the particles to its right and left. The transformatio
have induced both a linear friction and a constant, ‘‘negat
mass’’ background densityrb . Thus the system is equivalen
to a single component plasma with a drag force in wh
opposite charges repel and like charges attract.

In the mean field~Vlasov! limit, the system is amenable
to a continuum description. Useful information can be h
from the time dependant Vlasov equation, fixing the evo
tion of the density in thex2v phase plane. For example, w
easily find that the system energy decreases at a rate pro
tional to the kinetic energy, while the entropy decreases
the constant rate22g, and the Tsallis entropy decreases e
ponentially for q.1. This tells us that the mass is bein
concentrated in regions of decreasing area of the phase p
suggesting the development of structure. By asserting a
clidean metric in the phase plane, we can also investig
local properties such as the directions of maximum stret
ing and compression, as well as the local vorticity. We fi
that the rate of separation between two nearby points
maximum in the direction given by

tan~2u!5~11r1rb!/g, ~2.4!

where u defines the local slope~angle made with the ab
scissa! in the phase plane. Thus, in regions of low dens
we expect to see lines of mass being stretched with cons
positive slope.

For a discrete population, the dynamics can be viewed
a sequence of particle crossings. Between an adjacent pa
crossings, Eq.~2.3! can be integrated analytically to yield a
explicit solution for the position and velocity of each pa
ticle. Following the selection of an initial condition, an eve
driven algorithm was employed to compute the crossing
quence. The details of the algorithm are described elsew
@10#. The evolution was followed until boundary effects b
came noticeable, typically in 15–20 dimensionless tim
units. In a few instances~see below! much longer simula-
tions were carried out. The evolution of the system was s
tematically investigated with dynamical simulation for sy
tem populations of 10 000 and 50 000 particles~or sheets!.
Selected runs were also carried out with 500 000 sheets

III. DYNAMICAL SIMULATION

Depending on which cosmology we select, the statis
of the dependence of velocity on position in the linear
1-2
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FIG. 1. Density and phase plane distribution for the initial condition, and after evolution for four and ten dimensionless time u
N550 000 particles. The velocities are initially chosen at random from a Gaussian distribution with initial varianceL/l j52000.
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this
gime is characterized as Gaussian, 1/f noise, or a Brownian
motion of the normal or fractional variety@1#. In order to
determine the robustness of the dynamics, the respons
the system to several initial conditions was investigat
Here we discuss the two extremes: an initial Gausssian
tribution in velocity, and a Brownian motion in position. I
all cases, the particle positions were initially located equid
tantly along the coordinate line. For the Gaussian~or isother-
mal! case, the velocity of each particle was independen
selected from a normal distribution of mean zero and v
ances0

2. The initial temperature was chosen such that
length of the system was about 2000 times the Jean’s len
l j5s0v j . In contrast, for the Brownian motion initial con
dition, the increment in velocity from one particle to anoth
along the line is normally distributed. Thus in this case,
initial velocities of neighboring particles are strongly corr
lated.

As time evolved, visual inspection of the distribution
the cloud of points in thex-v phase plane, and their position
on the line, indicated they were similar for each initial co
dition, and we display the Gaussian~see Fig. 1!. For short
times, before crossings can occur, the field experienced
each particle is very weak, and we observe the expone
decrease in speed induced by the friction. However, as
05612
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number of crossings increases, the effects of instability
come apparent. Typically, in about four dimensionless ti
units, two types of structure become obvious—lines a
clumps. In the low density regions, the particles are distr
uted along a line of constant slope in the phase plane
suggested by the stretching analysis discussed above, w
in the high density regions they form clumps of rough
equal size. As the simulation goes forward in time, the p
cess is repeated in hierarchical fashion, i.e., the clum
merge into bigger clumps. To test the role of Jean’s leng
we also prepared a much hotter system, where the Je
length exceeded the system size. In that case, after the
tem cooled, a single clump formed near one boundary. H
ever, even this distribution evidenced hierarchical layer
around its center in the phase plane.

It is natural to assume that the apparently self-sim
structure that develops in the phase plane and along the
ordinate axis as time evolves has fractal geometry, but
will see that things aren’t so simple. An earlier study
particle positions on the line found a box counting dimens
of about 0.6 for an initial waterbag distribution~uniform on a
rectangle in the phase plane! @11#. Since the structures tha
evolve are strongly inhomogeneous, to gain further insi
we decided to carry out a multifractal analysis@7# in both the
phase plane and the position coordinate. To accomplish
1-3
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we partitioned each space into cells of lengthl. At each time
of observation in the simulation, a measurem i5Ni(t)/N was
assigned to celli, whereNi(t) is the population of celli at
time t andN is the total number of particles in the simulatio
The generalized dimension of orderq is defined by@7#

Dq5
1

q21
lim
l→0

ln Cq

ln l
, Cq5( m i

q . ~3.1!

As q increases above 0, theDq provide information on the
geometry of cells with higher population. If it exists, th
scaling range ofl is defined as the interval on which plots
ln Cq vs ln l are linear. Of course, for the special case oq
51, we plotSm i lnmi vs ln l. If a scaling range can be found
Dq is obtained by taking the appropriate derivative. It is w
established by proof and example that, for a normal, hom
geneous, fractal, all of the generalized dimensions are eq
while for an inhomogeneous fractal, e.g., the Henon attrac
Dq11<Dq @7#.

As expected, initially, and for a short time afterwards,
simulations showed a box counting dimension of two in
phase plane, and one along the coordinate axis. As time
gressed, however, for each of the two initial conditions d
cussed above, at least one clear scaling range devel
early in the simulation. For both the Gaussian and
Brownian motion,D0 quickly converged on about 0.6 an
remained there for most of the simulation. The size of
scaling range depended on both the elapsed time into
simulation and the value ofq. We started our investigation b
computing the first three generalized dimensions. We w
surprised to observe that, in fact,D2.D0 in all cases More-
over, for q>1, a secondary weaker scaling range was a
detected.

FIG. 2. Plot ofSm i ln(mi) vs the log of the box size. The two
dashed lines show the two regions for which the curve revea
linear scaling regime. For smaller and larger scales~not shown! the
slope takes on the obvious values of 0, and 1, respectively.
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In Fig. 2 we plot C1 vs ln l at the time t̂510 for the
isothermal initial condition. We clearly see one domina
scaling range for smalll, a second scaling range for interm
diate l, and the possibility of a third range for largerl. It is
suggestive that the transition between the first two sca
regimes occurs roughly at the Jeans length of the initial d
tribution. Since the size of the first clusters are appro
mately equal to the Jeans length, the suggestion is that
fractal geometry within the clusters differs from that of th
less populous ‘‘voids.’’ In Fig. 3 we plotDq vs q for the
same conditions and time as Fig. 2. We see that most of
change in dimension occurs when 0,q,1. Although there
is little change inDq for q.2, the dominant scaling rang
grows progressively smaller with increasingq. This type of
behavior was first inferred in a study of the observed cor
lations of galaxy positions by Bialin and Schaeffer@5# who
named the geometry bifractal since it characterizes the su
position of two independent regular fractals. Subsequent
has also been observed in some three-dimensionalN-body
simulations@8#.

IV. DISCUSSION AND CONCLUSIONS

In the last few years, the dynamics of a group of auton
mous one-dimensional models has been studied for the
pose of gaining new insight concerning the developmen
hierarchical structures. These include the adhesion mo
@12#, Burgers equation@13#, and different versions of the
system studied here, either with no scaling in position
time @14# ~so there is neither a background nor friction!,
incomplete scaling in position@15#~yielding a background
but no friction!, or with fractal initial conditions@16#. In the
adhesion model, particles move on the line according to th
mutual gravitational attraction. However, when they cro
they stick. In this system aggregation into a single large cl
ter occurs quickly, but a finite fraction of the system rema
associated with smaller clumps for a long time@12#. Burgers
equation has been carefully studied for a range of initial c
ditions that vary according to the correlation of initial veloc
ties on the line@13#. For some initial states, shocks develo

a

FIG. 3. Plot ofDq vs q for the same initial conditions and tim
as Fig. 2.
1-4
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yielding velocity portraitsv(x) similar to what we see in
Fig. 1.

Very recently, structure formation was observed in t
conservative one dimensional gravitational system, both w
and without a uniform, ‘‘negative mass’’~see above! back-
ground@14–16#. To get a better sense of how scaling infl
ences the development of structure, we also performed s
lations of these systems and examined their multifra
properties. The results were interesting: Similar, hierarchi
structures developed in each system. However, the gen
ized dimensions were larger in each case, about 0.8 forD0,
and bifractal behavior was much weaker than in the diss
tive version studied here. In fact, with no background, we
not observe a bifractal structure and, with the backgrou
present, although we foundD2.D0, the difference was
small. In each of these systems, the dimensions were
stable and varied with time. In the case without backgrou
the fractal appearance washed out with the subsequent
alization. With the background present, the structure endu
for a longer time. For contrast, we carried out a long sim
lation of the fully scaled system. We found that fractal stru
ture and scaling endured long after the system retreated
single cluster confined to a small region of the phase pla

We observed earlier that, so long as the Jeans length
initially accessible to the system, the formation of structu
occurred rapidly and robustly at about four dimensionl
time units for all attempted initial conditions. Of course, th
was in scaled time. Converting back to cosmic time, we s
ply find t5toexp(3/2)(t̂2 t̂0). If we take to as the time of
recombination in a de Sitter universe, approximat
105–106 years@1#, and scaled timet̂2 t̂054.0, we obtain a
time in the range (0.5–5)3109 years for the appearance o
the first galaxies. It may seem naive to use such a sim
.
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model to try to estimate the time when galaxies first appe
However, since~1! the origin of the model is three dimen
sional~see above!, ~2! the model consistently couples gravi
with expansion, and~3! dynamical simulation shows that th
results are similar under a large variety of initial condition
we should not be overly surprised that what we find is of
correct order.

An interesting, and potentially useful, feature of th
model is that it unambiguously exhibits what has be
coined bifractal geometry. While this type of structure h
been inferred from the study of correlation functions a
‘‘counts in cells’’ for the distribution of galaxies, the ability
to construct the geometry with an autonomous dynam
system could yield additional insights. Although comple
three-dimensional simulations could potentially yield mo
information, as a result of computational limitations it h
proven difficult to obtain such unambiguous results fro
them @8,17#. This is not surprising if we consider that algo
rithms employed in three-dimensional simulations nume
cally cutoff both the short range singularity and infinite ran
of the Newtonian potential and, at the present time, typica
employ 32–128 particles/dimension. In contrast, for t
model considered here, it is not necessary to compromise
dynamics. Moreover, with our event driven algorithm w
easily include 50 000 particles/dimension, or more. Sin
good statistics are essential for both determining the e
tence of scaling regimes and computing generalized dim
sions with confidence, this feature is of critical importanc

In a larger work we will elucidate the multifractal feature
in more detail and study their connection with correlations
position and in the phase plane. Important questions for
ture work concern the number of possible scaling regim
the existence of a scale on which homogeneity is establis
and the connection with simulations in higher dimension.
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