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Influence of expansion on hierarchical structure
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We study a one-dimensional model of gravitational instability in an Einstein—de Sitter universe. Scaling in
both space and time results in an autonomous set of coupled Poisson-Vlasov equations for both the field and
phase space density, and tRébody problem. Using dynamical simulation, we find direct evidence of hierar-
chical clustering. A multifractal analysis reveals a bifractal geometry similar to that observed in the distribution
of galaxies. To demonstrate the role of scaling, we compare the system to other one-dimensional models
recently employed to study structure formation. Finally we show that the model yields an estimate of the time
of galaxy formation of the correct order.
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I. INTRODUCTION I,, wherel,>1,>1_, andl,>1,>1.. Here the transition to
homogeneity occurs &t , the maximum size of voids is,,

The discovery nearly 25 years ago of large scale strucand the typical size of clusterslis. They named this object
tures in the universgl] stimulated several new approaches “bifractal.” More recently the approach has been success-
to cosmology. In order to explain, or at least model, thefully applied to the distribution of mass in halg8].
hierarchical distribution of galaxies in clusters, and clusters In addition to the Hausdorff dimension, the existence of a
of clusters, surrounding immense voids, it was proposed thdtierarchy of generalized dimensiolk, which are closely
matter in the universe occupies a fractal set, with a definiteelated to the properties of correlation functions at small
fractal geometry and dimensidh,2]. It is currently believed scales folg=2, is now well establishe[]. In particular,D,,
that the process for creating this singular distribution of masss simply the box counting dimensioB,; is the information
follows from the hydrodynamic flow of dark matter, either dimension, and, is the correlation dimension. For a nor-
hot or cold[1,3]. In the former case structure evolves in themal fractal with self-similar geometry at all scale3 ;
top down mode, while the latter is bottom up and reflects the<D,, [7]. An unusual feature of bifractal geometry is the
more prevalent view. Both of these themes introduce theiwiolation of this inequality, which can be taken as its signa-
own peculiar set of difficulties: the fractal assumption playsture [5,6].
havoc with the homogeneity at large scales required by the A central question for astrophysics is whether it is pos-
standard mode[1] while the bottom up scenario may be sible to construct a single, consistent, dynamical model that
problematic because it predicts galaxy formation at a timg1) obeys physical law(2) is homogeneous on large scales,
when the background density is smidl. (3) exhibits hierarchical clustering or aggregation, &ydis

Before (and aftey the discovery of large scales, useful characterized by bifractal geometry. While three-dimensional
information was obtained by assembling statistical informa-N-body simulations suggest this possibil[i§], due to both
tion concerning the distribution of galaxies in the sky. Thealgorithmic and numerical limitations at the present time
primary tool for organizing this information is the construc- their results must be considered inconclusive, and we will
tion of correlation functions representing the distribution ofelaborate on this point later. As early as the 1930’s, dynami-
pairs of galaxies, triples, etc. While complete functions at allcal models of cosmic evolution were introduced that joined
orders are unobtainable, specific symmetries and scalinghe Hubble flow with the gravitational fieldl]. They were
laws have emerged from the data. First the validity of alater rejected as possible sources of structure formation be-
power law was established for the dependence on intergalacause, in the linear approximation, density fluctuations about
tic separation of the pair correlation function, with exponenta homogeneous background did not grow sufficiently rapidly
y=1.8 [1]. Second, it was found that the data on higherto produce galaxies during the lifetime of the univefsé
order distributions supported the assumption that the nth oHere we revisit a version of one of these models with the
der correlations are homogeneous functions of ordér ( goal of following the evolution of small initial fluctuations
1)y [1]. over the full nonlinear regime.

In pioneering work, Bialin and Schaeff¢b] employed In the following we introduce a version of a de Sitter
these properties to reconcile the assumption of homogeneityniverse obeying classical dynamics appropriate to the
on large scales with fractality on intermediate and smallpostrecombination epoch. As in the relativistic Tolman-
scales. They demonstrated that the distribution of galaxieBondi models[9], we simplify the geometry by assuming
was not consistent with a normal fractal, but rather with aspherical symmetry about an observer. In addition, we exam-
geometry that is characterized by two length scdlegand ine a region sufficiently distant from the observer that the
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effects of curvature can be ignored. In contrast with mostyuency, defined bybjz=47rG;3 as our unit of time(see[10]

obtain a completely autonomous dynamical system. Thg mass sheet in the new frame then takes the form
model was first introduced by Rouet and FEDO,11], who

showed that aggregation was stimulated by excitations at the d2x dx
Jeans length, and computed a box counting dimension less
than unity, suggesting fractal behavior. Here we use Vlasov-
Poisson theory to characterize the central properties of the . ) ,
dynamics. We then use dynamical simulation to examine thwherek is the transformed field and the choice of a neutral-
consequences of a variety of initial conditions. We carry ouiZing background requireg=1/\2. Equation(2.3) describes

a complete dimensional analysis of the phase plane and defle motion of a collisionless system of particles moving un-
sity distribution as time evolves, and show that the systen§ler their mutual gravitational field. From Gauss'’s law ap-
exhibits bifractal geometry in all cases where the Jeanglied to uniform mass sheets, the field experienced by a par-
length is initially available to the fluctuations. We demon- ticle on the line is simply proportional to the net difference in
strate that, for this model, the earliest time for aggregation ignass of the particles to its right and left. The transformations
nearly independent of initial conditions or population. We have induced both a linear friction and a constant, “negative
use the value of this scaled time to estimate the earliest epnass” background densify, . Thus the system is equivalent
och for the appearance of galaxies in the universe, with sut0 @ single component plasma with a drag force in which

W'ﬁ"yﬁ_X:E, (23)

prising results. opposite charges repel and like charges attract.
In the mean fieldVlasov) limit, the system is amenable
Il. CONSTRUCTION OF THE MODEL to a continuum description. Useful information can be had

from the time dependant Vlasov equation, fixing the evolu-
Consider a spherically symmetric, homogenous, expandion of the density in th&xc—v phase plane. For example, we
ing universe with density(t) under conditions where New- easily find that the system energy decreases at a rate propor-
tonian mechanics applies. L&(t/ty;) be the cosmological tional to the kinetic energy, while the entropy decreases at
scale factor, so that the distanid¢) between two objects at the constant rate-2y, and the Tsallis entropy decreases ex-
the timet is related to that at the earlier timg by I(t) ponentially forg>1. This tells us that the mass is being
=C(t/ty)l(ty). Herety does not signify the big bang, but concentrated in regions of decreasing area of the phase plane
rather an arbitrary, later time where only gravitational phe-suggesting the development of structure. By asserting a Eu-
nomena play an important role in the cosmic evolution. Toclidean metric in the phase plane, we can also investigate
this expansion we must add a residual motion that is a smalbcal properties such as the directions of maximum stretch-
perturbation of the Hubble flow, but leads the system to dang and compression, as well as the local vorticity. We find
nonlinear regime. that the rate of separation between two nearby points is a
From spherical symmetry, we only need to track a singlemaximum in the direction given by
coordinate, the radius. Thus our system elements are repre-
sented by concentric mass shells. The description can be fur- tan260)=(1+p+pp)/y, 2.9
ther simplified by assuming that we are far from the center of i )
symmetry and that the length of the system is small comWhere ¢ defines the local slopéangle made with the ab-
pared to the radius of the shells, so that we may replace theRfiSsa in the phase plane. Thus, in regions of low density,
with planar sheets. Then the equation of motion of a shee® expect to see lines of mass being stretched with constant

with coordinatex is simply positive slope. , _ _
For a discrete population, the dynamics can be viewed as
d2x a sequence of particle crossings. Between an adjacent pair of
— =E(X.b), (2.1)  crossings, Eqg(2.3) can be integrated analytically to yield an
dt explicit solution for the position and velocity of each par-

. oL i ticle. Following the selection of an initial condition, an event

whereE is the gr_awtatlonal field. . . . . driven algorithm was employed to compute the crossing se-
For_ the spemal case of an Elnstem—Qe Sitter universe uence. The details of the algorithm are described elsewhere

there is a unique rescaling of space and time to a new fra 0]. The evolution was followed until boundary effects be-

in which the dynamical evolution is autonomous. Introduce_ noticeable, typically in 15-20 dimensionless time

new coordinates andt, units. In a few instanceésee below much longer simula-
- - tions were carried out. The evolution of the system was sys-
x=C(t)x, dt=A(t)"dt, (2.2 tematically investigated with dynamical simulation for sys-

tem populations of 10000 and 50000 particles sheets

whereC= (t/to)*?is the usual scale factft]. To insure that Selected runs were also carried out with 500 000 sheets.

the transformed version of E(R.1) is autonomous, we must
then choosé\(t) = (t/t,) 2. The complete three-dimensional
expansion is taken into account with this choiceGgt). In

the transformed frame the average dengitg constant. Fol- Depending on which cosmology we select, the statistics
lowing standard practice, we choose the inverse Jeans fref the dependence of velocity on position in the linear re-

IlI. DYNAMICAL SIMULATION
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FIG. 1. Density and phase plane distribution for the initial condition, and after evolution for four and ten dimensionless time units, for
N=50000 particles. The velocities are initially chosen at random from a Gaussian distribution with initial varianee2 000.

gime is characterized as Gaussiarf, ddise, or a Brownian number of crossings increases, the effects of instability be-
motion of the normal or fractional varietyl]. In order to  come apparent. Typically, in about four dimensionless time
determine the robustness of the dynamics, the response ufits, two types of structure become obvious—lines and
the system to several initial conditions was investigatedclumps. In the low density regions, the particles are distrib-
Here we discuss the two extremes: an initial Gausssian digited along a line of constant slope in the phase plane, as
tribution in velocity, and a Brownian motion in position. In Suggested by the stretching analysis discussed above, while
all cases, the particle positions were initially located equidisi" the high density regions they form clumps of roughly
tantly along the coordinate line. For the Gausgiamisother-  €dual size. As the simulation goes forward in time, the pro-
mal) case, the velocity of each particle was independenthyf €SS 1S repeated in hierarchical fashion, i.e., the clumps

selected from a normal distribution of mean zero and vari-"¢'9¢ into bigger clumps. To test the role of Jean's length,

anceoj. The initial temperature was chosen such that th we also prepared a much hotter system, where the Jean's

| h of th bout 2000 ti he Jeans | ength exceeded the system size. In that case, after the sys-
ength of the system was about times the Jean's lengtiy ' coled, a single clump formed near one boundary. How-

Aj=oow;j . In contrast, for the Brownian motion initial con- gyer even this distribution evidenced hierarchical layering
dition, the increment in velocity from one particle to anotherground its center in the phase plane.

along the line is norma"y distributed. Thus in this case, the It is natural to assume that the apparent'y self-similar
initial velocities of neighboring particles are strongly corre- strycture that develops in the phase plane and along the co-
lated. ordinate axis as time evolves has fractal geometry, but we
As time evolved, visual inspection of the distribution of will see that things arent so simple. An earlier study of
the cloud of points in th&-v phase plane, and their positions particle positions on the line found a box counting dimension
on the line, indicated they were similar for each initial con-of about 0.6 for an initial waterbag distributi¢nniform on a
dition, and we display the Gaussiasee Fig. 1 For short rectangle in the phase plangll]. Since the structures that
times, before crossings can occur, the field experienced bgvolve are strongly inhomogeneous, to gain further insight
each particle is very weak, and we observe the exponentiale decided to carry out a multifractal analygig in both the
decrease in speed induced by the friction. However, as thphase plane and the position coordinate. To accomplish this
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isothermal initial condition. We clearly see one dominant
FIG. 2. Plot of % u;In(w;) vs the log of the box size. The two scaling range for small a second scaling range for interme-
dashed lines show the two regions for which the curve reveals diatel, and the possibility of a third range for largkerlt is
linear scaling regime. For smaller and larger scates shownthe  suggestive that the transition between the first two scaling
slope takes on the obvious values of 0, and 1, respectively. regimes occurs roughly at the Jeans length of the initial dis-
tribution. Since the size of the first clusters are approxi-
we partitioned each space into cells of lengtAt each time  mately equal to the Jeans length, the suggestion is that the
of observation in the simulation, a measyre=N;(t)/N was  fractal geometry within the clusters differs from that of the
assigned to cell, whereN;(t) is the population of cell at  less populous “voids.” In Fig. 3 we ploD, vs g for the
timet andN is the total number of particles in the simulation. same conditions and time as Fig. 2. We see that most of the
The generalized dimension of ordgiis defined by[7] change in dimension occurs wherc@< 1. Although there
is little change inD, for g>2, the dominant scaling range
1 InC, q grows progressively smaller with increasiggThis type of
Dq:q__l |“m inl Co=2 il (3.1 pehavior was first inferred in a study of the observed corre-
—0 lations of galaxy positions by Bialin and Schaeffél who
) L , named the geometry bifractal since it characterizes the super-
As g increases above 0, tfi2, provide information on the ,qition of two independent regular fractals. Subsequently it

geometry of cells with higher population. If it exists, the h55 also been observed in some three-dimensiiFaddy
scaling range of is defined as the interval on which plots of simulations[8].

InC, vs Inl are linear. Of course, for the special caseqof
=1, we plotX uilny; vs Inl. If a scaling range can be found,
D, is obtained by taking the appropriate derivative. It is well
established by proof and example that, for a normal, homo-
geneous, fractal, all of the generalized dimensions are equal, In the last few years, the dynamics of a group of autono-
while for an inhomogeneous fractal, e.g., the Henon attractoimous one-dimensional models has been studied for the pur-
Dg+1=Dyq [7]. pose of gaining new insight concerning the development of
As expected, initially, and for a short time afterwards, all hierarchical structures. These include the adhesion model
simulations showed a box counting dimension of two in the[12], Burgers equation13], and different versions of the
phase plane, and one along the coordinate axis. As time prgystem studied here, either with no scaling in position or
gressed, however, for each of the two initial conditions distime [14] (so there is neither a background nor friction
cussed above, at least one clear scaling range developéttomplete scaling in positiofl5](yielding a background
early in the simulation. For both the Gaussian and thebut no friction, or with fractal initial conditiong16]. In the
Brownian motion,Dq quickly converged on about 0.6 and adhesion model, particles move on the line according to their
remained there for most of the simulation. The size of themutual gravitational attraction. However, when they cross,
scaling range depended on both the elapsed time into thiey stick. In this system aggregation into a single large clus-
simulation and the value @f We started our investigation by ter occurs quickly, but a finite fraction of the system remains
computing the first three generalized dimensions. We werassociated with smaller clumps for a long tifd€]. Burgers
surprised to observe that, in fafl,>Dg in all cases More- equation has been carefully studied for a range of initial con-
over, forq=1, a secondary weaker scaling range was alsalitions that vary according to the correlation of initial veloci-
detected. ties on the lind 13]. For some initial states, shocks develop,

IV. DISCUSSION AND CONCLUSIONS
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yielding velocity portraitsv(x) similar to what we see in model to try to estimate the time when galaxies first appear.
Fig. 1. However, sincg1) the origin of the model is three dimen-

Very recently, structure formation was observed in thesional(see abovkg (2) the model consistently couples gravity
conservative one dimensional gravitational system, both withvith expansion, and3) dynamical simulation shows that the
and without a uniform, “negative masgsee aboveback-  results are similar under a large variety of initial conditions,
ground[14—-16. To get a better sense of how scaling influ- We should not be overly surprised that what we find is of the
ences the development of structure, we also performed sim§orrect order.

lations of these systems and examined their multifractal A" interesting, and potentially useful, feature of the
model is that it unambiguously exhibits what has been

properties. The results were interesting: Similar, hierarchical, " . ; .
structures developed in each system. However, the gener 9'ned. bifractal geometry. While this type of structure has
' een inferred from the study of correlation functions and

ized dimensions were larger in each case, about 0.®or “counts in cells” for the distribution of galaxies, the ability

and bifractal behavior was much weaker than in the d|55|p3f0 construct the geometry with an autonomous dynamical

2\(;? \é?)rssé?\?esgj%ﬁ?azfe:le.s:pufciﬁtr’ewgg dnov\gﬁlcﬁﬁgogggi(wrig:] ystem could yield additional insights. Although complete
' 9 hree-dimensional simulations could potentially yield more

presl?nf, alth(?]ug? t:]ve f0unfti)2> D(;,h thc?' difference Wasl information, as a result of computational limitations it has
small. In €ach ot INese systems, the GIMENSIonS WETe Tesq,yen difficult to obtain such unambiguous results from

stable and varied with time. In the case without background e P : i
the fractal appearance washed out with the subsequent Virﬁpem[&l‘/]. This is not surprising if we consider that algo

N . thms employed in three-dimensional simulations numeri-
alization. W'th the background present, _the structure endure ally cutoff both the short range singularity and infinite range
for a longer time. For contrast, we carried out a long simu-

. f the Newtonian ntial an the present tim icall
lation of the fully scaled system. We found that fractal struc-0 the Newtonian potential and, at the present time, typically

; d i dured | fter th : rreated t employ 32-128 particles/dimension. In contrast, for the
uré and scaling endured fong after the systém retreated 10,8, 40" cgnsidered here, it is not necessary to compromise the

single cluster confint_ad to a small region of the phase planed namics. Moreover, with our event driven algorithm we

. _We observeq earlier that, so long as the qeans length was sily include 50000 particles/dimension, or more. Since
initially accessible to the system, the formation of structure ood statistics are essential for both determining the exis-
occurred rapidly and robustly at about four dimensionles ence of scaling regimes and computing generalized dimen-
time _units for a_II attempted i_nitial conditions. .Of course, this sions with confidence, this feature is of critical importance.
was .|n scaled time. anvAertlng back to cosmic t|mg, WESIM= 154 larger work we will elucidate the multifractal features
ply find t=t,exp(3/2)t —to). If we taket, as the time of iy more detail and study their connection with correlations in
recombination in a de Sitter universe, approximatelyposition and in the phase plane. Important questions for fu-
10°—1C years[1], and scaled timé—t,=4.0, we obtain a ture work concern the number of possible scaling regimes,
time in the range (0.5-5910° years for the appearance of the existence of a scale on which homogeneity is established,
the first galaxies. It may seem naive to use such a simpland the connection with simulations in higher dimension.
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